

Self-Biased BFP405

- SIEGET[®]25- Technology
- Small SCT598-Package
- Control Pin For Switching The Device Off
- Current Easy Adjustable By An External Resistor
- Voltage Independent Current (2V 4.5V)

VPW05982

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	U		Pin Configuration (circuit Diagram)	Package
BGC405	40s	Q62702-G0091	see below	SCT598

Equivalent Circuit

Pin Connections, SCT598

Note: Top View

Description

The BGC405 is a silicon self biased RF Transistor (Q1). It offers an adjustable collector current nearly independent from device voltage in the range from 2.0V to 4.5V. Additionally a control pin (Vc) for switching the device off is provided. The collector current can be adjusted by connecting a resistor (Rx) between Vcc and Vr.

Maximum Ratings

Parameter	Symbol		Unit
Device current	<i>I</i> cc	12	mA
Device voltage	Vcc	4.5	V
Total power dissipation, $T_s \leq 120^{\circ}C^{-1}$	Ptot	54	mW
Control voltage	Vc	Vcc+0.5	V
Input Current for pin 1	Ir	380	μA
Junction temperature	Tj	150	°C
Ambient temperature range	T _A	-65+150	°C
Storage temperature range	T _{stg}	-65+150	°C
Thermal Resistance			
Junction-soldering point ¹⁾	R _{th} JS	≤ 530	K/W

1)T $_{\mbox{S}}$ is measured on the Ground lead at the soldering point to the pcb.

Electrical Specifications (Measured in Test Fixture applying the circuit specified in Figure 1 with Rx=82 Ω), Tc=25°C, Vcc=3V, I_{cc}=7mA unless noted

Symbol	Parameter		Unit	Min	Тур	Max
Gp	Power Gain $(S_{21} ^2)$	f=900MHz	dB	19.5	21	
		f=1.8GHz		16.5	18	
NF	Noise Figure (in 50 Ω System)	f=900MHz	dB		1.8	2.1
		f=1.8GHz			2.0	2.3
P _{-1dB}	Output Power at 1dB Gain Compression	f=900MHz	dBm		1	
	(in 50 Ω System)	f=1.8GHz			0.5	
IP₃	Third Order Intercept Point	f=900MHz	dBm		15	
	(Output, Γ_{Opt})	f=1.8GHz			15	
RL _{in}	Input Return Loss	f=900MHz	dB		5	
		f=1.8GHz			8	
RL _{out}	Output Return Loss	f=900MHz	dB		1.5	
		f=1.8GHz			3	
t _{on}	On Switching Time ³⁾		μs		3.7	
t _{off}	Off Switching Time ³⁾		μs		2.5	
I _{leak}	Leakage Current In Sleep Mode		μA		<10	
I _{VcOn}	Controll Pin (Vc) Current in Active Mode ²⁾				35	
I _{VcOff}	Controll Pin (Vc) Current in Sleep Mode ²	nA		-60		
V _{cmin}	Minimum Voltage at Vc for Sleep Mode		V		V _{cc} - 0.3V	
V _{cmax}	Maximum Voltage at Vc for Active Mode		V		0V+0.3V	

²⁾ A positive sign denotes a current flowing form the Pin to the external circuit.

³⁾ This values are valid for C2=1nF, C3=100pF and 220pF Coupling capacitors at RFin and RFout.

Power Gain versus Device Current Vcc=3V

|S21|² versus Frequency and Temperature Vcc=3V, Icc=7mA

Device Current versus Device Voltage

Device Current versus Rx and Temperature Vcc=3V

Device Current versus Voltage at Vc Vcc=3V; Rx=82Ω

Typical Application

Figure 1. Typical Application and Internal Circuit

Remarks:

- 1) To provide low frequency stability C2 should be 10 times C3.
- 2) Be aware that also coupling capacitors determine the switching times.
- 3) The collector current at Q1 can be estimated by $Ic=0.6V / Rx[\Omega]$.
- 4) Place C2 as close to the device as possible.

Layout Proposal

Figure 2. Layout Proposal

Component	Value	Comment
L1	100nH	RFC
C2	1nF	Compensation Capacitor for Low Frequency Stabilization
C3	100pF	RFC
C4	150pF	Blocking Capacitor
C5	100nF	Blocking Capacitor
C6	220pF	Coupling Capacitor
C7	220pF	Coupling Capacitor
Rx	82Ω	Current Adjust
Substrate	h=0.5mm	$Fr4, \varepsilon_r = 4.5$
BGC405		

Part	l ist	for	Vcc=3V	l _{cc} ≈7mA

This proposal demonstrates how to use the BGC405 as a *Self-Biased Transistor*. As for a discrete Transistor matching circuits have to be applied. A good starting point for various applications are the Application Notes provided for the BFP405.

SPICE Model

The following SPICE Listing describes the circuit shown in figure 3. It is valid for low frequencies. For frequencies above 100MHz the parasitic circuit elements noted in figure 4 and table 1 should be added.

Figure. 3: Circuit used in the SPICE File

* Preliminary SPICE Model for BGC405 * SIEMENS HIGH FREQUENCY PRODUCTS * Small Scale MMIC Design Group .PARAM R=82 ** Analysis setup ** *.TRAN 2ns 15u 0 2n .TEMP +27 -40 +85 .DC LIN V1 OV 4V 0.1V *.DC LIN V2 OV 3V 0.1V *.STEP PARAM R LIST 33 47 68 100 150 * Voltage supply V1 Vcc 0 DC 3.0V V2 Vc 0 DC 0.0V PULSE(0 3V 100ns 0 0 9us 1000m) *Vpul Vc 0

BGC405

	1					
	ernal Resist	47k	ща		00005	
R1 R2	3 VC			-0.0006,0.00	00025	
	Vr 2	500		-0.0006,0.0	00005	
R3	Vb 0	TOK	.T.C=.	-0.0006,0.00	00025	
R4	Vb rfin	2.7k	'TC=	-0.0006,0.0		
	ernal Resist				<u>_</u>	
Rx	Vcc Vr	{R}	'TC=·	+0.000050,0.	0	
Rout	vout 0	50				
Rın	vin O	50				
* Ext	ernal Capaci	tors				
		_				
	Vb 0	1nF				
C3	Vr 0	100pF				
C7	rfin vin	220pF	1			
C6	rfout vout	220pF	•			
* Ind	uctors (exte	ernal)				
L1	Vr rfout	100nH	Ι			
* Tra	nsistors					
Q1	rfout rfin	0	BFP	405		
X2	2 3 Vb 0		8PL	18		
Х3	Vcc 5 5 0		2PL	18		
	5330		2PL	18		
.PROB	E					
.MODE	L BFP405 NPN	Ι(
+ IS	= 1.9969e - 16	5 E	3F =	83.23	NF = 1.0405	
	= 39.251		IKF =	0.16493	ISE = 1.5761e-14	
	= 1.7763			10.526	NR = 0.96647	
	= 34.368			0.25052	ISC = 3.7223e - 17	
	= 1.3152		RB =		IRB = 0.00021215	
				-		
	= 1.3491			1.9289	RC = 0.12691	
	= 3.7265e-1			0.70367	MJE = 0.37747	
	= 4.5899e-12			0.3641	VTF = 0.19762	
	= 0.0013364		PTF =		CJC = 9.6941e - 14	
	= 0.99532			0.48652	XCJC = 0.08161	
+ TR	= 1.4935e-09		CJS=	0	VJS = 0.75	
+ MJS	= 0	Σ	KTB =	0	EG = 1.11	
+ XTI		E		0.99469)		
* PNP: PL18 E B C Bulk						
.SUBC	KT 8PL18 3	2 1	194			
Q1	993 2	3	94	TL18 8		
Q2	94 2	3	94	VSL18 8		
Q2 Q3	94 2	993	94	LSL18 8		
QJ DOEV	002 1		1	0 204		

ž –		_	-		
Q3	94	2	993	94	LSL18
RCEX	993	1			0.204
.ENDS					

.SUBCKT 2PL18 3 2 1 94

Infi	neon				
Q2 94 Q3 94		94 94 94	TL18 2 VSL18 2 LSL18 2 0.816		
***** .MODEL +IS +NE +BR +VAF +IKR +RBM +XTB +CJE +TF +ITF +MJC +CJS +PTF	TL18 = 2.914E-17 = 1.553E+00 = 2.869E+01 = 6.000E+01 = 2.474E-05 = 4.000E+01 = -6.000E-01 = 1.200E-14 = 7.600E-10 = 1.400E-02 = 3.760E-01 = 0.000E+00 = 0.000E+00	PNP NF ISE NC IKF RB RE EG VJE XTF CJC XCJC VJS FC	<pre>= 1.000E+00 = 6.923E-16 = 1.500E+00 = 1.676E-04 = 6.000E+01 = 2.597E+00 = 1.156E+00 = 4.900E-01 = 2.872E-01 = 4.700E-13 = 1.000E+00 = 7.500E-01 = 5.000E-01</pre>	BF NR ISC VAR IRB RC XTI MJE VTF VJC TR MJS	<pre>= 4.005E+02 = 1.000E+00 = 8.190E-15 = 2.214E+00 = 0.000E+00 = 4.000E+00 = 1.360E-01 = 1.000E+03 = 7.610E-01 = 0.000E+00 = 0.000E+00</pre>
***** .MODEL +IS +NE +BR +VAF +IKR +RBM +XTB +CJE +TF +ITF +MJC +CJS +PTF	VSL18 = 1.630E-19 = 1.500E+00 = 1.000E+09 = 1.000E+02 = 1.000E+00 = 0.000E+00 = 0.000E+00 = 2.000E-09 = 1.000E+06 = 3.770E-01 = 0.000E+00 = 0.000E+00	PNP NF ISE NC IKF RB RE EG VJE XTF CJC XCJC VJS FC	<pre>= 1.000E+00 = 0.000E+00 = 2.000E+00 = 1.794E-04 = 0.000E+00 = 0.000E+00 = 1.122E+00 = 6.800E-01 = 0.000E+00 = 1.950E-13 = 0.000E+00 = 7.500E-01 = 5.000E-01</pre>	BF NR ISC VAR IRB RC XTI MJE VTF VJC TR MJS	<pre>= 1.000E+09 = 1.000E+00 = 0.000E+00 = 1.700E+00 = 0.000E+00 = 3.000E+00 = 3.400E-01 = 1.000E+03 = 5.500E-01 = 0.000E+00 = 0.000E+00</pre>
***** MODEL +IS +NE +BR +VAF +IKR +RBM +XTB +CJE +TF +ITF +MJC +CJS +PTF *****	LSL18 = 4.261E-17 = 1.500E+00 = 1.000E+09 = 6.000E+01 = 1.000E+00 = 0.000E+00 = 0.000E+00 = 1.000E-09 = 1.000E+06 = 3.000E-01 = 0.000E+00 = 0.000E+00	PNP NF ISE NC IKF RB RE EG VJE XTF CJC XCJC VJS FC	<pre>= 1.000E+00 = 0.000E+00 = 2.000E+00 = 9.648E-05 = 0.000E+00 = 0.000E+00 = 1.158E+00 = 6.800E-01 = 0.000E+00 = 0.000E+00 = 7.500E-01 = 5.000E-01</pre>	BF NR ISC VAR IRB RC XTI MJE VTF VJC TR MJS	<pre>= 1.000E+09 = 1.000E+00 = 0.000E+00 = 1.700E+00 = 0.000E+00 = 0.000E+00 = 3.400E-01 = 1.000E+03 = 4.600E-01 = 0.000E+00 = 0.000E+00</pre>

.END

Figure 4. Parasitic circuit elements for frequencies above 100MHz

Element	Value
Lp1	0.58nH
Lp2	0.56nH
Lp3	0.23nH
Lp4	0.05nH
Lp5	0.53nH
Lp6	0.47nH
Lp7	1nH
Cp1	134fF
Cp2	136fF
Ср3	6.9fF

Table 1. Parasitic circuit elements for frequencies above 100MHz

BGC405

Published by Infineon Technologies AG i Gr., **Bereichs Kommunikation** St.-Martin-Strasse 76, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.