Self-Biased BFP405

- SIEGET ${ }^{\circledR} 25$ - Technology
- Small SCT598-Package
- Control Pin For Switching The Device Off
- Current Easy Adjustable By An External Resistor
- Voltage Independent Current ($2 \mathrm{~V}-4.5 \mathrm{~V}$)

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Type	Marking	Ordering Code (8-mm taped)	Pin Configuration (circuit Diagram)	Package
BGC405	40s	Q62702-G0091	see below	SCT598

Equivalent Circuit

Pin Connections, SCT598

Note: Top View

Description

The BGC405 is a silicon self biased RF Transistor (Q1). It offers an adjustable collector current nearly independent from device voltage in the range from 2.0 V to 4.5 V . Additionally a control pin (Vc) for switching the device off is provided. The collector current can be adjusted by connecting a resistor (Rx) between Vcc and Vr.

Maximum Ratings

Parameter	Symbol		Unit
Device current	$I_{C C}$	12	mA
Device voltage	$V_{c C}$	4.5	V
Total power dissipation, $\mathrm{Ts}_{\mathrm{s}} \leq 120^{\circ} \mathrm{C}{ }^{1)}$	$P_{\text {tot }}$	54	mW
Control voltage	$V c$	$\mathrm{VcC}+0.5$	V
Input Current for pin 1	Ir	380	$\mu \mathrm{~A}$
Junction temperature	T_{j}	150	${ }^{\circ} \mathrm{C}$
Ambient temperature range	T_{A}	$-65 \ldots+150$	${ }^{\circ} \mathrm{C}$
Storage temperature range	$T_{\text {stg }}$	$-65 \ldots+150$	${ }^{\circ} \mathrm{C}$

Thermal Resistance

Junction-soldering point	$1)$	$R_{\text {th }}$ JS	≤ 530	K/W

1) T_{S} is measured on the Ground lead at the soldering point to the pcb.

Electrical Specifications (Measured in Test Fixture applying the circuit specified in Figure 1 with $\mathrm{Rx}=82 \Omega$), $\mathrm{Tc}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{cc}} \approx 7 \mathrm{~mA}$ unless noted

Symbol	Parameter		Unit	Min	Typ	Max
Gp	Power Gain ($\left\|\mathrm{S}_{21}\right\|^{2}$)	$\mathrm{f}=900 \mathrm{MHz}$	dB	19.5	21	
		$\mathrm{f}=1.8 \mathrm{GHz}$		16.5	18	
NF	Noise Figure (in 50Ω System)	$f=900 \mathrm{MHz}$	dB		1.8	2.1
		$\mathrm{f}=1.8 \mathrm{GHz}$			2.0	2.3
$\mathrm{P}_{-1 \mathrm{~dB}}$	Output Power at 1dB Gain Compression (in 50Ω System)	$\mathrm{f}=900 \mathrm{MHz}$	dBm		1	
		$\mathrm{f}=1.8 \mathrm{GHz}$			0.5	
IP_{3}	Third Order Intercept Point	$f=900 \mathrm{MHz}$	dBm		15	
	(Output, Гopt)	$\mathrm{f}=1.8 \mathrm{GHz}$			15	
$R L_{\text {in }}$	Input Return Loss	$\mathrm{f}=900 \mathrm{MHz}$	dB		5	
		$\mathrm{f}=1.8 \mathrm{GHz}$			8	
$\mathrm{RL}_{\text {out }}$	Output Return Loss	$\mathrm{f}=900 \mathrm{MHz}$	dB		1.5	
		$\mathrm{f}=1.8 \mathrm{GHz}$			3	
$\mathrm{t}_{\text {on }}$	On Switching Time ${ }^{\text {3) }}$		$\mu \mathrm{S}$		3.7	
$\mathrm{t}_{\text {off }}$	Off Switching Time ${ }^{\text {3) }}$		$\mu \mathrm{s}$		2.5	
$l_{\text {leak }}$	Leakage Current In Sleep Mode		$\mu \mathrm{A}$		<10	
$\mathrm{I}_{\mathrm{c} \text { con }}$	Controll Pin (Vc) Current in Active Mode ${ }^{2 /}$		$\mu \mathrm{A}$		35	
$\mathrm{I}_{\mathrm{VcOHf}}$	Controll Pin (Vc) Current in Sleep Mode ${ }^{2 /}$		nA		-60	
$\mathrm{V}_{\text {cmin }}$	Minimum Voltage at Vc for Sleep Mode		V		$\mathrm{V}_{\text {cc }}-0.3 \mathrm{~V}$	
$\mathrm{V}_{\text {cmax }}$	Maximum Voltage at Vc for Active Mode		V		$0 \mathrm{~V}+0.3 \mathrm{~V}$	

[^0]
Power Gain

versus Frequency

Vcc=3V, Icc=5mA

$|\mathbf{S 2 1}|^{2}$
versus Frequency and Temperature
Vcc=3V, Icc=7mA

Device Current
versus Device Voltage

Device Current
versus Voltage at Vc
Vcc=3V; Rx=82 Ω

Device Current

versus Rx and Temperature
Vcc=3V

Typical Application

Figure 1. Typical Application and Internal Circuit

Remarks:

1) To provide low frequency stability C 2 should be 10 times C 3 .
2) Be aware that also coupling capacitors determine the switching times.
3) The collector current at Q1 can be estimated by Ic=0.6V / Rx[Ω].
4) Place C 2 as close to the device as possible.

Layout Proposal

Figure 2. Layout Proposal

Part List for Vcc=3V, $I_{c c} \approx 7 \mathrm{~mA}$

Component	Value	Comment
L1	100 nH	RFC
C2	1 nF	Compensation Capacitor for Low Frequency Stabilization
C3	100 pF	RFC
C4	150 pF	Blocking Capacitor
C5	100 nF	Blocking Capacitor
C6	220 pF	Coupling Capacitor
C7	220 pF	Coupling Capacitor
Rx	82Ω	Current Adjust
Substrate	$\mathrm{h}=0.5 \mathrm{~mm}$	Fr4, $\varepsilon_{\mathrm{r}}=4.5$
BGC405		

This proposal demonstrates how to use the BGC405 as a Self-Biased Transistor. As for a discrete Transistor matching circuits have to be applied. A good starting point for various applications are the Application Notes provided for the BFP405.

SPICE Model

The following SPICE Listing describes the circuit shown in figure 3. It is valid for low frequencies. For frequencies above 100 MHz the parasitic circuit elements noted in figure 4 and table 1 should be added.

Figure. 3: Circuit used in the SPICE File

* Preliminary SPICE Model for BGC405
* SIEMENS HIGH FREQUENCY PRODUCTS
* Small Scale MMIC Design Group
. PARAM R=82
** Analysis setup **
*.TRAN 2ns 15u 0 2n
. TEMP $+27-40+85$
. DC LIN V1 0V 4V 0.1V
*.DC LIN V2 OV 3V 0.1V
*.STEP PARAM R LIST 334768100150
* Voltage supply

V1 Vcc 0 DC 3.0V
V2 Vc 0 DC 0.0V
*Vpul Vc $0 \quad$ PULSE (0 3V 100ns 0 9us 1000m)

*	Internal	Resistors	
R1	3 VC	47 k	TC=-0.0006,0.0000025
R2	Vr 2	500	TC=-0.0006,0.0
R3	Vb	0	10 k
R4	Vb rfin	2.7 k	TC $=-0.0006,0.0000025$

* External Resistors

Rx	Vcc Vr	$\{R\}$	$\mathrm{TC}=+0.000050,0.0$
Rout	vout 0	50	
Rin	vin 0	50	

* External Capacitors

C 2	Vb 0	1 nF
C	Vr 0	100 pF
C7	rfin vin	220 pF
C6	rfout vout	220 pF

* Inductors (external)

L1 Vr rfout 100 nH

* Transistors			
Q1	rfout rfin 0	BFP405	
X2	2	3	Vb 0

.PROBE
.MODEL BFP405 NPN(

+ IS $=1.9969 \mathrm{e}-16$
$+\mathrm{VAF}=39.251$
$+\mathrm{NE}=1.7763$
$+\mathrm{VAR}=34.368$
$+\mathrm{NC}=1.3152$
+ RBM $=1.3491$
$+\mathrm{CJE}=3.7265 \mathrm{e}-15$
$+\mathrm{TF}=4.5899 \mathrm{e}-12$
$+\mathrm{ITF}=0.0013364$
$+\mathrm{VJC}=0.99532$
$+\mathrm{TR}=1.4935 \mathrm{e}-09$
$+\mathrm{MJS}=0$
$+\mathrm{XTI}=3$
$\mathrm{NF}=1.0405$
ISE $=1.5761 \mathrm{e}-14$
NR $=0.96647$
ISC $=3.7223 \mathrm{e}-17$
$I R B=0.00021215$
$\mathrm{RC}=0.12691$
$\mathrm{MJE}=0.37747$
$\mathrm{VTF}=0.19762$
CJC $=9.6941 \mathrm{e}-14$
$\mathrm{XCJC}=0.08161$
VJS $=0.75$
$\mathrm{EG}=1.11$

SUBCKT							
Q1	8PL18	3	2	1	94		
Q1	993	2	3	94	TL18	8	
Q2	94	2	3	94	VSL18	8	
Q3	94	2	993	94	LSL18	8	
RCEX	993	1			0.204		

.ENDS

Q1	993	2	3	94	TL18	2
Q2	94	2	3	94	VSL18	2
Q3	94	2	993	94	LSL18	2
RCEX	993	1			0.816	

.ENDS

. MODEL	TL18	PNP			
+IS	$=2.914 \mathrm{E}-17$	NF	$=1.000 \mathrm{E}+00$	BF	$=4.005 \mathrm{E}+02$
+NE	$=1.553 \mathrm{E}+00$	ISE	$=6.923 \mathrm{E}-16$	NR	$=1.000 \mathrm{E}+00$
+BR	$=2.869 \mathrm{E}+01$	NC	$=1.500 \mathrm{E}+00$	ISC	$=8.190 \mathrm{E}-15$
+VAF	$=6.000 \mathrm{E}+01$	IKF	$=1.676 \mathrm{E}-04$	VAR	$=2.214 \mathrm{E}+00$
+IKR	$=2.474 \mathrm{E}-05$	RB	$=6.000 \mathrm{E}+01$	IRB	$=0.000 \mathrm{E}+00$
+RBM	$=4.000 \mathrm{E}+01$	RE	$=2.597 \mathrm{E}+00$	RC	$=4.000 \mathrm{E}+00$
+XTB	$=-6.000 \mathrm{E}-01$	EG	$=1.156 \mathrm{E}+00$	XTI	$=3.000 \mathrm{E}+00$
+CJE	$=1.200 \mathrm{E}-14$	VJE	$=4.900 \mathrm{E}-01$	MJE	$=1.360 \mathrm{E}-01$
+TF	$=7.600 \mathrm{E}-10$	XTF	$=2.872 \mathrm{E}-01$	VTF	$=1.000 \mathrm{E}+03$
+ITF	$=1.400 \mathrm{E}-02$	CJC	$=4.700 \mathrm{E}-13$	VJC	$=7.610 \mathrm{E}-01$
+MJC	$=3.760 \mathrm{E}-01$	XCJC	$=1.000 \mathrm{E}+00$	TR	$=0.000 \mathrm{E}+00$
+CJS	$=0.000 \mathrm{E}+00$	VJS	$=7.500 \mathrm{E}-01$	MJS	$=0.000 \mathrm{E}+00$
+PTF	$=0.000 \mathrm{E}+00$	FC	$=5.000 \mathrm{E}-01$		

.MODEL	
VSL18	
+IS	$=$
+NE	$=1.630 \mathrm{E}-19$
+BR	$=1.000 \mathrm{E}+00$
+VAF	$=1.000 \mathrm{E}+02$
+IKR	$=1.000 \mathrm{E}+00$
+RBM	$=0.000 \mathrm{E}+00$
+XTB	$=0.000 \mathrm{E}+00$
+CJE	$=0.000 \mathrm{E}+00$
+TF	$=2.000 \mathrm{E}-09$
+ITF	$=1.000 \mathrm{E}+06$
+MJC	$=3.770 \mathrm{E}-01$
+CJS	$=0.000 \mathrm{E}+00$
+PTF	$=0.000 \mathrm{E}+00$

PNP	$=1.000 \mathrm{E}+00$	BF	$=1.000 \mathrm{E}+09$
NF	$=1.000 \mathrm{E}+00$	NR	$=1.000 \mathrm{E}+00$
ISE	$=0.00$		
NC	$=2.000 \mathrm{E}+00$	ISC	$=0.000 \mathrm{E}+00$
IKF	$=1.794 \mathrm{E}-04$	VAR	$=1.700 \mathrm{E}+00$
RB	$=0.000 \mathrm{E}+00$	IRB	$=0.000 \mathrm{E}+00$
RE	$=0.000 \mathrm{E}+00$	RC	$=0.000 \mathrm{E}+00$
EG	$=1.122 \mathrm{E}+00$	XTI	$=3.000 \mathrm{E}+00$
VJE	$=6.800 \mathrm{E}-01$	MJE	$=3.400 \mathrm{E}-01$
XTF	$=0.000 \mathrm{E}+00$	VTF	$=1.000 \mathrm{E}+03$
CJC	$=1.950 \mathrm{E}-13$	VJC	$=5.500 \mathrm{E}-01$
XCJC	$=0.000 \mathrm{E}+00$	TR	$=0.000 \mathrm{E}+00$
VJS	$=7.500 \mathrm{E}-01$	MJS	$=0.000 \mathrm{E}+00$
FC	$=5.000 \mathrm{E}-01$		

. MODEL	LSL18	PNP			
+IS	$=4.261 \mathrm{E}-17$	NF	$=1.000 \mathrm{E}+00$	BF	$=1.000 \mathrm{E}+09$
+NE	$=1.500 \mathrm{E}+00$	ISE	$=0.000 \mathrm{E}+00$	NR	$=1.000 \mathrm{E}+00$
+BR	$=1.000 \mathrm{E}+09$	NC	$=2.000 \mathrm{E}+00$	ISC	$=0.000 \mathrm{E}+00$
+VAF	$=6.000 \mathrm{E}+01$	IKF	$=9.648 \mathrm{E}-05$	VAR	$=1.700 \mathrm{E}+00$
+IKR	$=1.000 \mathrm{E}+00$	RB	$=0.000 \mathrm{E}+00$	IRB	$=0.000 \mathrm{E}+00$
+RBM	$=0.000 \mathrm{E}+00$	RE	$=0.000 \mathrm{E}+00$	RC	$=0.000 \mathrm{E}+00$
+XTB	$=0.000 \mathrm{E}+00$	EG	$=1.158 \mathrm{E}+00$	XTI	$=3.000 \mathrm{E}+00$
+CJE	$=0.000 \mathrm{E}+00$	VJE	$=6.800 \mathrm{E}-01$	MJE	$=3.400 \mathrm{E}-01$
+TF	$=1.000 \mathrm{E}-09$	XTF	$=0.000 \mathrm{E}+00$	VTF	$=1.000 \mathrm{E}+03$
+ITF	$=1.000 \mathrm{E}+06$	CJC	$=0.000 \mathrm{E}+00$	VJC	$=4.600 \mathrm{E}-01$
+MJC	$=3.000 \mathrm{E}-01$	XCJC	$=0.000 \mathrm{E}+00$	TR	$=0.000 \mathrm{E}+00$
+CJS	$=0.000 \mathrm{E}+00$	VJS	$=7.500 \mathrm{E}-01$	MJS	$=0.000 \mathrm{E}+00$
+PTF	$=0.000 \mathrm{E}+00$	FC	$=5.000 \mathrm{E}-01$		

.END

Figure 4. Parasitic circuit elements for frequencies above 100 MHz

Element	Value
Lp1	0.58 nH
Lp2	0.56 nH
Lp3	0.23 nH
Lp4	0.05 nH
Lp5	0.53 nH
Lp6	0.47 nH
Lp7	1 nH
Cp1	134 fF
Cp2	136 fF
Cp3	6.9 fF

Table 1. Parasitic circuit elements for frequencies above 100 MHz

Package

Published by

Infineon Technologies AG i Gr.,

Bereichs Kommunikation

St.-Martin-Strasse 76,

D-81541 München

© Infineon Technologies AG 1999

All Rights Reserved

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

[^0]: ${ }^{2)}$ A positive sign denotes a current flowing form the Pin to the external circuit.
 ${ }^{3)}$ This values are valid for $\mathrm{C} 2=1 \mathrm{nF}, \mathrm{C} 3=100 \mathrm{pF}$ and 220 pF Coupling capacitors at RFin and RFout.

